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Abstract

We construct generating functions for the entries of Hankel determinant formula for the Okamoto polynomials which
characterize a class of rational solutions to the Painlevé IV equation. Generating functions are characterized as asymptotic
expansions of log derivative of Ai and Bi, which are solutions of the Airy equation.
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1 Introduction

In the theory of integrable systems, structure of exact solutions are considered to reflect essential mathematical struc-
tures behind the equations. In the soliton theory, as clarified by the Sato theory[12], the dependent variables which are
introduced intuitively in the Hirota’s method (τ functions) are regarded as the most fundamental object, and determinant
or Pfaffian structure of theτ functions is reflection of the solution space and the transformation group acting on it. For
the Painlev́e equations, it is considered that theτ functions and their determinant structure are of the same importance
as the soliton equations, although the Painlevé equations are ordinary differential equations while the soliton equations
are partial differential equations. In the series of works[15, 16, 17, 18], Okamoto has introduced theτ functions through
the Hamiltonians, and studied their properties. He has shown that theτ functions satisfy the Toda equation in general,
and that some class of transcendental classical solutions (hypergeometric solutions, or special function solutions) can be
expressible in terms of determinants whose entries are given in terms of special functions of hypergeometric type. More-
over, for algebraic (or rational) solutions, which are another class of classical solutions to the Painlevé equations, it has
been revealed that the special polynomials that characterize the solutions are specialization of the Schur functions or their
generalization (universal characters) by studying the determinant formula of Jacobi-Trudi type [4, 7, 8, 10, 11, 14].

For example, the Painlevé II equation(PII )

d2u
dx2
= 2u3 − 4xu+ 4

(
α +

1
2

)
, (1)

admits a one-parameter family of transcendental classical solution expressible in terms of the solution of the Airy equation
whenα is an integer, and rational solutions whenα is a half-integer. As for the rational solutions, the following fact is
known: letTN (N ∈ Z) be the polynomials which are generated by the Toda equation

T′′NTN − (T′N)2 = TN+1TN−1 − x T2
N, T0 = 1, T1 = x, ′ =

d
dx
. (2)

Then we haveTN = T−N−1, and it is shown that the function

u =
d
dx

log
TN+1

TN
, (3)
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satisfy PII (1) with α = N + 1
2. The polynomialsTN is called the Yablonski-Vorob’ev (Y-V) polynomials. It is known that

the Y-V polynomials admit the following determinant formula of Jacobi-Trudi type[7]:

TN = cN

∣∣∣∣∣∣∣∣∣∣∣∣

pN pN+1 · · · p2N−1

pN−2 pN−1 · · · p2N−3
...

...
. . .

...

p−N+1 p−N+2 · · · p1

∣∣∣∣∣∣∣∣∣∣∣∣
,

∞∑

k=0

pkλ
k = exp

[
xλ +

λ3

3

]
, pn = 0 (n < 0), (4)

cN = (2N − 1)!! = (2N − 1)!!(2N − 3)!! · · ·3!!. (5)

Since the Schur functionSY(t1, t2, t3, . . .) associated with the 2-core Young diagramY = (N,N − 1, · · · ,1) is given by the
determinant in (4) withpk replaced by

∑∞
k=0 pkλ

k = exp
∑∞

n=1 tnλn [12], the above formula immediately implies thatTN

are nothing but the specialization of 2-core Schur functions. Furthermore, since the 2-core Schur functions give rational
solutions to KdV or modified KdV equation[12], this coincides with the fact that PII can be derived from similarity
reduction of the modified KdV equation(see, for example, [1]). In this manner, the determinant formula is useful to
clarify the essential property of the object.

On the other hand, it is known thatTN admits the following Hankel determinant formula[7]:

TN =

∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1 · · · aN−1

a1 a2 · · · aN
...

...
. . .

...

aN−1 aN · · · a2N−2

∣∣∣∣∣∣∣∣∣∣∣∣
, a0 = x, an = a′n−1 +

n−2∑

k=0

akan−2−k. (6)

If a determinant formula reflects some mathematical structure, what does this formula imply? In particular, what are the
entriesan? In order to investigate this problem, a generating function foran was considered in [2], and the following result
was obtained:

Theorem 1.1 [2] We define the generating functionF(x, t) of an (n ≥ 0) by

F(x, t) =
∞∑

n=0

an (−2t)−n. (7)

Then, the following asymptotic expansion aroundt → ∞ holds for any subsector of|argt| < π
2 :

F(x, t) ∼ ∂

∂t
logθ(x, t), θ(x, t) = e

2t3

3 Ai( t2 − x), (8)

whereAi is the Airy function.

This result is quite suggestive, since log derivative of the Airy function is another particular solution to PII . In fact,

u =
d
dx

log Ai(21/3x), (9)

satisfies PII (1) with α = 0. Is this phenomenon caused by an accident? In order to answer this question, it may be an
important problem to investigate whether similar phenomena take place for other Painlevé equations or not.

In this article, we consider the Painlevé IV equation (PIV )

d2y
dx2
=

1
2y

(
dy
dx

)2

+
3
2

y3 + 6xy+
9
2

(
x2 − 4

3
α

)
y− β

2y
, (10)

whereα andβ are parameters, and the Okamoto polynomials which characterize a class of rational solutions for PIV .
We construct the Hankel determinant formula for the Okamoto polynomials and discuss the generating functions for the
entries of determinants.
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2 Okamoto polynomials and Hankel determinant formula

Let Qn (n ∈ Z) be polynomials generated by the following Toda equation:

Q′′n Qn −
(
Q′n

)2
= Qn+1Qn−1 − (x2 + 2n+ 1)Q2

n, (11)

Q0 = 1, Q1 = x2 + 1. (12)

Then, it is known that [17, 13]

y =
d
dx

log
Qn+1

Qn
− x, (13)

satisfies PIV (10) with α = n + 1, β = 1. The polynomialsQn are called the Okamoto polynomials.A Jacobi-Trudi type
determinant formula forQn is discussed in [8, 14, 13], and it is shown thatQn are specialization of 3-core Schur functions.

Let us construct the Hankel determinant formula forQn. A Hankel determinant formula for the general solution of the
Toda equation has been presented in [6] as follows:

Theorem 2.1 [6] Let {τn}n∈Z functions satisfying the Toda equation:

τ′′n τn − τ′2n = τn+1τn−1 − ψϕ τ2
n, τ−1 = ψ, τ0 = 1, τ1 = ϕ. (14)

Let {an}n∈N, {bn}n∈N be sequences defined by the recursion relation

an = a′n−1 + ψ

n−2∑

k=0

akan−k, bn = b′n−1 + ϕ

n−k∑

k=0

bkbn−k, a0 = ϕ, b0 = ψ, (15)

respectively. Thenτn is expressed as

τn =



det(ai+ j−2)i, j≤n n > 0,
1 n = 0,
det(bi+ j−2)i, j≤|n| n < 0.

(16)

Applying Theorem 2.1 to the Toda equation forQn (11), we have the following formula:

Proposition 2.2

Qn =



det
(
ai+ j−2

)
1≤i, j≤n

, n ≥ 1

1 n = 0,−1
det

(
bi+ j−2

)
1≤i, j≤|n|−1

, n ≤ −1
(17)

an = a′n−1 + 2xan−1 +

n−2∑

k=0

akan−2−k, a0 = x2 + 1, a1 = 2x3 + 4x, (18)

bn = b′n−1 − 2xbn−1 +

n−2∑

k=0

bkbn−2−k, b0 = x2 − 1, b1 = 2x3 − 4x. (19)

Proof For technical reason, we separate the casesn > 0 andn < 0. PuttingQn = e−nx2
Rn in (11), we have

R′′n Rn −
(
R′n

)2
= Rn+1Rn−1 − (x2 + 1)R2

n,

R−1 = e−x2
, R0 = 1, R1 = ex2

(x2 + 1).
(20)

Applying Theorem 2.1 to (20) withn > 0, we have

Rn = det(ãi+ j−2), ãn = ã′n−1 + e−x2
n−2∑

k=0

ãkãn−k, ã0 = ex2
(x2 + 1). (21)

Now puttingãn = ex2
an and noticing thatRn = enx2

Qn , we obtain the formula forn > 0 as

Qn = det(ai+ j−2), an = a′n−1 + 2xan−1 +

n−2∑

k=0

akan−k, a0 = x2 + 1. (22)
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For the case ofn < 0, puttingQn = e−(n+1)x2
Sn+1, we have

S′′n Sn −
(
S′n

)2
= Sn+1Sn−1 − (x2 − 1)S2

n,

S−1 = e−x2
(x2 − 1), S0 = 1, S1 = ex2

.
(23)

Applying Theorem 2.1 to (23) withn < 0, we get the formula forn < 0 by similar calculations.¤

3 Generating functions

3.1 Main result

Let Iν(z) be the modified Bessel function

Iν(z) =
∞∑

n=0

(z/2)ν+2k

Γ(k+ 1)Γ(k+ ν + 1)
, |z| < ∞, |argz| < π. (24)

We define the functions Ai(z) and Bi(z) by

Ai(z) =
z1/2

3

[
I−1/3

(
2z3/2

3

)
− I1/3

(
2z3/2

3

)]
, (25)

Bi(z) =
z1/2

3

[
I−1/3

(
2z3/2

3

)
+ I1/3

(
2z3/2

3

)]
, (26)

respectively. It is known that Ai(z) and Bi(z) are independent solutions of the Airy equation

d2u
dz2
= zu, (27)

and that they admit the following asymptotic expansion aroundz∼ ∞ [9]:

Ai(z) ∼ U−(z) |argz| < π,
Bi(z) ∼ U+(z) |argz| < π

3
,

(28)

where

U±(z) =
1

2
√
π

exp

(
±2z3/2

3

)
z−1/4

∞∑

n=0

(
1
6

)
n

(
5
6

)
n

n!

(
±4z3/2

3

)−n

. (29)

Now we define the generating functions for the entriesan andbn of the Hankel determinant formula ofQn obtained in
Proposition 2.2 by

F(x, t) =
∞∑

n=0

ant−3n, G(x, t) =
∞∑

n=0

bnt−3n. (30)

Then the main result of this article is stated as follows:

Theorem 3.1 Define the functionsθ1(x, t), θ2(x, t) by



θ1(x, t) = Bi

(
t4

4
− xt

)
exp

(
− t6

12
+

xt3

2

)
,

θ2(x, t) = Ai

(
t4

4
+ xt

)
exp

(
t6

12
+

xt3

2

)
,

(31)

respectively. Then, the following asymptotic expansions hold aroundt ∼ ∞:

F(x, t) ∼ t4

x− t3

[
∂

∂t
logθ1(x, t) − x2

t

]
, | argt| < π

12
, (32)

G(x, t) ∼ t4

x+ t3

[
∂

∂t
logθ2(x, t) +

x2

t

]
, | argt| < π

4
. (33)
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3.2 Riccati equation

In the following we give the proof of Theorem 3.1. The strategy for proof is described as follows:

(1) We derive Riccati equations forF andG from the recursion relations (18) and (19), respectively.

(2) We then linearize the Riccati equations by a standard technique to yield the Airy equation.

(3) Finally we identify the functions by investigating asymptotic behaviours.

Proposition 3.2 F(x, t) andG(x, t) satisfy the folloiwng Riccati equations,

t3
∂F
∂x
= −F2 + t3(t3 − 2x)F − t6(x2 + 1), (34)

t3
∂G
∂x
= −G2 + t3(t3 + 2x)G− t6(x2 − 1), (35)

respectively.

proof: (34) can be derived as follows:

F2 =

∞∑

n=0


∞∑

k=0

akan−k

 t−3n =

∞∑

n=0

(
an+2 − a′n+1 − 2xan+1

)
t−3n

=
(
t6F − t6a0 − t3a1

)
−

(
t3
∂F
∂x
− t3a′0

)
− 2x

(
t3F − t3a0

)

= −t3
∂F
∂x
+ t3(t3 − 2x)F − t6(x2 + 1),

where we have used (18) to derive the second equality. We obtain (35) by the similar calculation.¤
SinceF(x, t) andG(x, t) are defined as formal series aroundt ∼ ∞, it is useful to derive differential equations with

respect tot. For this purpose we present the following lemma:

Lemma 3.3 (1) an andbn satisfy the following recursion relations,

a′n = xa′n−1 + (3n+ 1)an−1, (36)

b′n = −xb′n−1 − (3n+ 1)bn−1, (37)

respectively.

(2) F(x, t) andG(x, t) satisfy the following linear differential equations,

(x− t3)
∂F
∂x
= t

∂F
∂t
− 4F − 2xt3, (38)

(x+ t3)
∂G
∂x
= t

∂G
∂t
− 4G + 2xt3, (39)

respectively.

The first statement can be proved by a simple induction. The second statement follows immediately from (36) and (37).
¤

From Lemma 3.3, we obtain the Riccati equations with respect tot.

Proposition 3.4 F(x, t) andG(x, t) satisfy the following Riccati equations

t
∂F
∂t
= − x− t3

t3
F2 + (−t6 + 3t3x− 2x2 + 4)F + t3(t3x2 + t3 − x3 + x), (40)

t
∂G
∂t
= − x+ t3

t3
G2 + (t6 + 3xt3 + 2x2 + 4)G+ t3(−t3x2 + t3 − x3 − x), (41)

respectively.
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3.3 Linearization and identification of functions

We obtain the Airy equation by linearization of the Riccati equations by standard technique.

Proposition 3.5 (1) Putting

F = t3
vx

v
− xt3 +

t6

2
, (42)

the Riccati equation (34) reduces to the following linear equation:

∂2v
∂x2
= t3

(
−x+

t3

4

)
v. (43)

(2) Similarly, putting

F =
t4

x− t3
vt

v
− xt3 +

t6

2
, (44)

the Riccati equation (40) reduces to the following linear equation:

∂2v
∂t2
= − 3t2

x− t3
∂v
∂t
+ t(x− t3)2

(
−x+

t3

4

)
v. (45)

(3) (43) and (45) are transformed into the Airy equation

d2v
dz2
= zv, (46)

by the change of variable

z= t

(
−x+

t3

4

)
. (47)

A similar proposition holds forG(x, t):

Proposition 3.6 (1) Putting

G = t3
wx

w
+ xt3 +

t6

2
, (48)

the Riccati equation (35) reduces to the following linear equation:

∂2w
∂x2
= t3

(
x+

t3

4

)
w. (49)

(2) Similarly, putting

G =
t4

x+ t3
wt

w
+ xt3 +

t6

2
, (50)

the Riccati equation (41) reduces to the following linear equation:

∂2w
∂t2
=

3t2

x+ t3
∂w
∂t
+ t(x+ t3)2

(
x+

t3

4

)
w. (51)

(3) (49) and (51) are transformed into the Airy equation

d2w
dz2
= zw, (52)

by the change of variable,

z= t

(
x+

t3

4

)
. (53)

We omit the proof since it is done by elementary calculations.
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Remark 3.7 Assertions (1) and (2) in Proposition 3.5 are consistent. Namely, (1) and (2) can be transformed to each
other under the assumption that(x, t) dependence ofu is given byu = u(z). A similar remark also holds for Proposition
3.6.

Let us finally identify the function by considering its asymptotic behaviour aroundt ∼ ∞. Solving (44) in terms ofv,
we have from (30)

v(x, t) = const. × exp

[
1
12

t6 − 1
2

xt3
]
× 1

t
× exp

−
∞∑

n=0

xan−1 − an

3n
t−3n

 . (54)

The functionv is given as linear combination of Ai(z) and Bi(z). We compare the above expression with (28) and (29).
Noticing that we have from (47)

2
3

z
3
2

t→∞∼ t6

12
− 1

2
xt3 + · · · , z−

1
4

t→∞∼
√

2
t

(
1+

x
t3
+ · · ·

)
,

we find thatu should be
u(x, t) ∼ U+(z), (55)

by comparing the exponential factors. This proves the statement regardingF in Theorem 3.1. The statement forG can be
proved in a similar manner by using Proposition 3.6.¤

4 Concluding remarks

In this article, we have shown that the generating functions associated with the Hankel determinant formula for Okamoto
polynomials can be characterized by the log derivative of solutions of the Airy equation. It is an interesting observation
that Bi and Ai, the solutions of Airy equation with different asymptotic behaviours, appear in opposite directions with
respect ton.

We have posed the question as to whether the appearance of the log derivative of the Airy function in the generating
function associated with Y-V polynomials is an accident or not. The result of this article appears to imply that the answer
is “No”. It may be an interesting problem to characterize generating functions associated with special polynomials for
other Painlev́e equations in terms of the log derivative of special functions of hypergeometric type.

If this phenomena is not caused by accident, we should clarify the reason and mechanism underlying it. Unfortunately
we cannot give an answer to this problem yet. Recently, Hankel determinant formula for generic solutions to PII and the
generating functions of its entries have been discussed in [3]. It is shown that the generating functions are also charac-
terized by log derivative of solutions of certain linear differential equations, which are nothing but the auxiliary linear
problem for PII . This result is not a conclusive answer to the problem, but it may imply some (unknown) correspondence
between the Painlevé equations and their auxiliary linear problems. At least, it may be true that there is a nontrivial
mathematical structure behind Hankel determinant formulae, which deserves further study.
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