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Abstract

We construct generating functions for the entries of Hankel determinant formula for the Okamoto polynomials which
characterize a class of rational solutions to the Pa@lg\equation. Generating functions are characterized as asymptotic
expansions of log derivative of Ai and Bi, which are solutions of the Airy equation.
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1 Introduction

In the theory of integrable systems, structure of exact solutions are considered to reflect essential mathematical struc-
tures behind the equations. In the soliton theory, as clarified by the Sato theory[12], the dependent variables which are
introduced intuitively in the Hirota’s method functions) are regarded as the most fundamental object, and determinant
or Pfdfian structure of the functions is reflection of the solution space and the transformation group acting on it. For
the Painle@ equations, it is considered that théunctions and their determinant structure are of the same importance
as the soliton equations, although the Paialequations are ordinaryftirential equations while the soliton equations
are partial diferential equations. In the series of works[15, 16, 17, 18], Okamoto has introduceélitinetions through
the Hamiltonians, and studied their properties. He has shown thatftivections satisfy the Toda equation in general,
and that some class of transcendental classical solutions (hypergeometric solutions, or special function solutions) can be
expressible in terms of determinants whose entries are given in terms of special functions of hypergeometric type. More-
over, for algebraic (or rational) solutions, which are another class of classical solutions to the&ainlations, it has
been revealed that the special polynomials that characterize the solutions are specialization of the Schur functions or their
generalization (universal characters) by studying the determinant formula of Jacobi-Trudi type [4, 7, 8, 10, 11, 14].

For example, the Painléul equation(R)
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admits a one-parameter family of transcendental classical solution expressible in terms of the solution of the Airy equation
whena is an integer, and rational solutions wheris a half-integer. As for the rational solutions, the following fact is
known: letTy (N € Z) be the polynomials which are generated by the Toda equation
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satisfy B (1) witha = N + % The polynomialdTy is called the Yablonski-Vorob’ev (Y-V) polynomials. It is known that
the Y-V polynomials admit the following determinant formula of Jacobi-Trudi type[7]:
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Since the Schur functio8y(ty, to, t3, . . .) associated with the 2-core Young diagram (N,N — 1,---, 1) is given by the
determinant in (4) withpy replaced byY >, pkd® = expXi ; thA" [12], the above formula immediately implies tHBg
are nothing but the specialization of 2-core Schur functions. Furthermore, since the 2-core Schur functions give rational
solutions to KdV or modified KdV equation[12], this coincides with the fact thatcBn be derived from similarity
reduction of the modified KdV equation(see, for example, [1]). In this manner, the determinant formula is useful to
clarify the essential property of the object.

On the other hand, it is known th@t, admits the following Hankel determinant formula[7]:
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If a determinant formula reflects some mathematical structure, what does this formula imply? In particular, what are the
entriesa,? In order to investigate this problem, a generating functioafevas considered in [2], and the following result
was obtained:

Theorem 1.1 [2] We define the generating functidf(x, t) of a, (n > 0) by
Foo) = > an (-2 @)
n=0
Then, the following asymptotic expansion arotiré oo holds for any subsector ¢drgt| < 3:

F(x.1) ~ % logd(x.1), 6(xt) = €3 Ai(t2 - x), ®)

whereAi is the Airy function.

This result is quite suggestive, since log derivative of the Airy function is another particular solutipnitofBct,
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satisfies p (1) with @ = 0. Is this phenomenon caused by an accident? In order to answer this question, it may be an
important problem to investigate whether similar phenomena take place for other Pagleations or not.
In this article, we consider the PainkV equation (/)
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wherea andg are parameters, and the Okamoto polynomials which characterize a class of rational solutigps for P
We construct the Hankel determinant formula for the Okamoto polynomials and discuss the generating functions for the
entries of determinants.



2 Okamoto polynomials and Hankel determinant formula

Let Q, (n € Z) be polynomials generated by the following Toda equation:

HQn = (Q)° = Qni1Qn1 — (@ +2n+ 1)QZ, (11)
Q=1 Qq=x+1 (12)
Then, it is known that [17, 13]
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satisfies R (10) witha = n+ 1,8 = 1. The polynomial€Q, are called the Okamoto polynomials.A Jacobi-Trudi type
determinant formula fo@, is discussed in [8, 14, 13], and it is shown tkgatare specialization of 3-core Schur functions.

Let us construct the Hankel determinant formula@r A Hankel determinant formula for the general solution of the
Toda equation has been presented in [6] as follows:

Theorem 2.1 [6] Let {rn}nez functions satisfying the Toda equation;
T =T = Tt Tl — Y9 T2, T1=Y, To=1 t1=¢. (14)

Let{an}nen, {bnlney be sequences defined by the recursion relation
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respectively. Then, is expressed as
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Applying Theorem 2.1 to the Toda equation @ (11), we have the following formula:

Proposition 2.2
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Proof For technical reason, we separate the case$ andn < 0. PuttingQ, = e™R,in (11), we have
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Applying Theorem 2.1 to (20) with > 0, we have
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Now puttinga,, = e°a, and noticing thaR, = €Q, , we obtain the formula fon > 0 as
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For the case ofi < 0, puttingQ, = e ™Y¥S ., we have
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Applying Theorem 2.1 to (23) with < 0, we get the formula fon < 0 by similar calculationsJ
3 Generating functions
3.1 Mainresult
Let1,(2) be the modified Bessel function
i > (2/2)v+2k
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We define the functions Adf and Bi@) by
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respectively. It is known that Azf and Bi@z) are independent solutions of the Airy equation
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and that they admit the following asymptotic expansion araundw [9]:
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Now we define the generating functions for the entagandb, of the Hankel determinant formula &f, obtained in
Proposition 2.2 by
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Then the main result of this article is stated as follows:

Theorem 3.1 Define the functiong; (X, t), 82(x, t) by
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respectively. Then, the following asymptotic expansions hold arbungh:
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3.2 Riccati equation

In the following we give the proof of Theorem 3.1. The strategy for proof is described as follows:
(1) We derive Riccati equations fér andG from the recursion relations (18) and (19), respectively.
(2) We then linearize the Riccati equations by a standard technique to yield the Airy equation.
(3) Finally we identify the functions by investigating asymptotic behaviours.

Proposition 3.2 F(x, t) andG(x, t) satisfy the folloiwng Riccati equations,

3 Z—E = —F2 4+ 35 - 2)F -t + 1), (34)
3 0G 2 | 43143 62
£ = -G+ (E + 296 - 1°(< - 1), (39)

respectively.

proof: (34) can be derived as follows:
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where we have used (18) to derive the second equality. We obtain (35) by the similar caldulation.

SinceF(x,t) andG(x,t) are defined as formal series around o, it is useful to derive dferential equations with
respect td. For this purpose we present the following lemma:

Lemma 3.3 (1) a, andb, satisfy the following recursion relations,
a, = Xa,  + (30 + 1)an1, (36)
by, = —xbf,_; — (3n+ L)y 1, (37)
respectively.
(2) F(x,t) andG(x,t) satisfy the following linear gierential equations,

oF OF

(x— t3)a =t —4F - 2xt3, (38)
G 0G
(x+ t3)g—x = taa—t — 4G + 2xt3, (39)

respectively.

The first statement can be proved by a simple induction. The second statement follows immediately from (36) and (37).
O

From Lemma 3.3, we obtain the Riccati equations with respect to

Proposition 3.4 F(x,t) andG(x, t) satisfy the following Riccati equations
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respectively.



3.3 Linearization and identification of functions
We obtain the Airy equation by linearization of the Riccati equations by standard technique.

Proposition 3.5 (1) Putting

V. t6

F=t32-xtt+ = 42
v xt° + > (42)

the Riccati equation (34) reduces to the following linear equation:
v 4 t3
ﬁ =t (—X+ Z)V (43)
(2) Similarly, putting
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the Riccati equation (40) reduces to the following linear equation:
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(3) (43) and (45) are transformed into the Airy equation
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by the change of variable
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A similar proposition holds foG(x, t):
Proposition 3.6 (1) Putting
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the Riccati equation (35) reduces to the following linear equation:;
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(2) Similarly, putting
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the Riccati equation (41) reduces to the following linear equation:
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(3) (49) and (51) are transformed into the Airy equation

d’w
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by the change of variable,
t3
z—t(x+z). (53)

We omit the proof since it is done by elementary calculations.



Remark 3.7 Assertions (1) and (2) in Proposition 3.5 are consistent. Namely, (1) and (2) can be transformed to each
other under the assumption th@t t) dependence af is given byu = u(z). A similar remark also holds for Proposition
3.6.

Let us finally identify the function by considering its asymptotic behaviour aréundo. Solving (44) in terms of,

we have from (30)
P t‘3”] . (54)
3n
n=0

The functionv is given as linear combination of A and Bi@z). We compare the above expression with (28) and (29).
Noticing that we have from (47)
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we find thatu should be
u(x, t) ~ U, (2), (55)

by comparing the exponential factors. This proves the statement reg&rdintheorem 3.1. The statement f8rcan be
proved in a similar manner by using Proposition 3.5.

4 Concluding remarks

In this article, we have shown that the generating functions associated with the Hankel determinant formula for Okamoto
polynomials can be characterized by the log derivative of solutions of the Airy equation. It is an interesting observation
that Bi and Ai, the solutions of Airy equation withftirent asymptotic behaviours, appear in opposite directions with
respect ta.

We have posed the question as to whether the appearance of the log derivative of the Airy function in the generating
function associated with Y-V polynomials is an accident or not. The result of this article appears to imply that the answer
is “No”. It may be an interesting problem to characterize generating functions associated with special polynomials for
other Painle& equations in terms of the log derivative of special functions of hypergeometric type.

If this phenomena is not caused by accident, we should clarify the reason and mechanism underlying it. Unfortunately
we cannot give an answer to this problem yet. Recently, Hankel determinant formula for generic solutipasdatiie
generating functions of its entries have been discussed in [3]. It is shown that the generating functions are also charac-
terized by log derivative of solutions of certain lineaffdiential equations, which are nothing but the auxiliary linear
problem for B. This result is not a conclusive answer to the problem, but it may imply some (unknown) correspondence
between the Painlévequations and their auxiliary linear problems. At least, it may be true that there is a nontrivial
mathematical structure behind Hankel determinant formulae, which deserves further study.
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